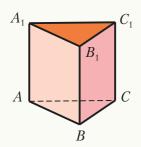
Многогранники

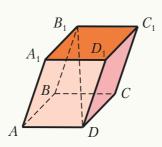
призма

прямая правильная



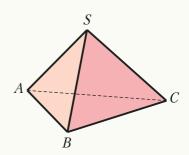
параллелепипед

прямой прямоугольный



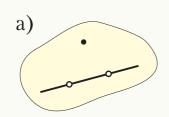
пирамида

правильная $mempa \ni \partial p$

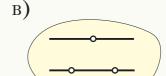


АКСИОМЫ СТЕРЕОМЕТРИИ

- І. Если две точки прямой принадлежат ...
- II. Если две плоскости имеют общую точку ...
- III. Через три точки, не лежащие ...

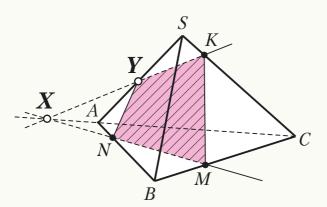


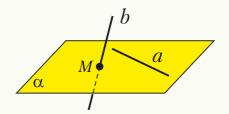
Следствия



Признак скрещивающихся прямых

Дано: $a \in \alpha$, $b \cap \alpha = M$, $M \notin a$ Доказать: $a \ u \ b$ скрещиваются





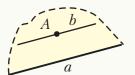
Задача

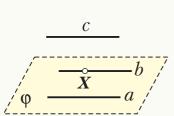
Дано: точки M, N, K **Построить**: сечение тетраэдра SABCплоскостью MNK

Параллельность прямых

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$

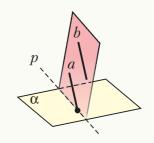
Дано: $a \mid\mid b, a$ перес. α Доказать: b перес. α



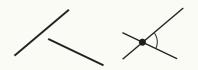


 $egin{aligned} \mathbf{T_3} & \mathbf{Дано}: a \parallel c, \ b \parallel c \ & \mathbf{Доказать}: a \parallel b \end{aligned}$

 $m{b}$ лежит в пл. $m{\phi}$ (T_2) $m{b}$ не перес. $m{a}$ (T_1)

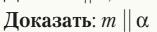


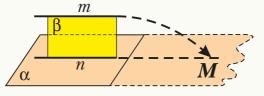
УГОЛ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ



Параллельность прямой и плоскости

Дано: $m \mid\mid n, n \in \alpha$

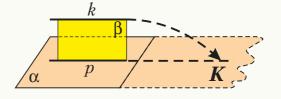




M — общая для α и β .

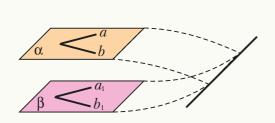
Дано: $k \parallel \alpha, \ k \in \beta$

Доказать: $k \parallel p$



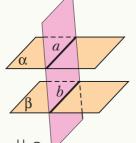
Если к пересекает р, то к пересекает и α!

Параллельность плоскостей



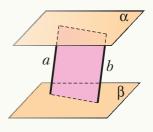
Дано: $a \parallel a_1, b \parallel b_1$

Доказать: $\alpha \parallel \beta$



Дано: $\alpha \parallel \beta$

Доказать: $a \parallel b$



Дано: $\alpha \parallel \beta$, $a \parallel b$

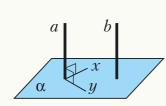
Доказать: a = b

Перпендикулярность прямой и плоскости

Признак к двум!

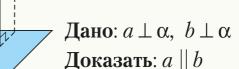
Дано: $AO \perp OB$, $AO \perp OC$

Доказать: $AO \perp \kappa$ любой!



Дано: $a \mid\mid b, \ a \perp \alpha$

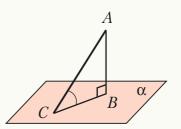
Доказать: $b \perp \alpha$



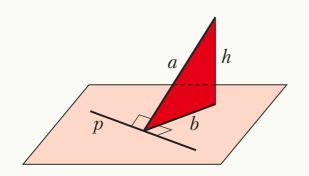
Перпендикуляр и наклонная

меньшей наклонной — меньшая проекция равным наклонным — равные проекции

 $\angle C$ — угол между прямой AC и пл. α



Теорема о трех перпендикулярах



Дано: $b \perp p$

Дано: $a \perp p$

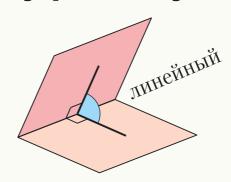
Доказать: $a \perp p$ Доказать: $b \perp p$

Если проекция (b) перпендикулярна прямой (p), лежащей в плоскости, то и сама наклонная (a) перпендикулярна этой прямой (p). Если наклонная (a) перпендикулярна прямой (p), лежащей в плоскости, то и ее проекция (b) перпендикулярна этой прямой (p).

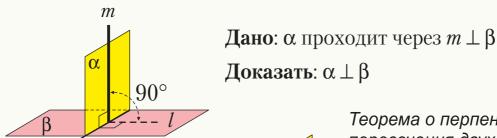
Прямая **р** перпендикулярна двум пересекающимся прямым плоскости треугольника: b u h unu a u h.

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ

Двугранный угол



Признак перпендикулярности плоскостей



Теорема о перпендикуляре к линии пересечения двух перпендикулярных

плоскостей

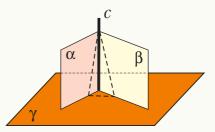
Дано: $\alpha \perp \beta$, $k \perp p$ **Доказать**: $k \perp \beta$

Теорема о линии пересечения двух плоскостей, перпендикулярных третьей плоскости

 90°

Дано: $\alpha \perp \gamma$, $\beta \perp \gamma$

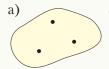
Доказать: $c \perp \gamma$

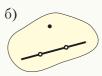


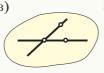
Геометрия. 10 класс

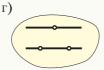
Прямые и плоскости в пространстве

4 способа задания плоскости

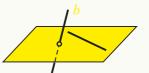








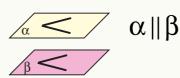
Признак скрещивающихся прямых



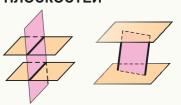
ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМОЙ И ПЛОСКОСТИ

 $m \parallel \alpha$

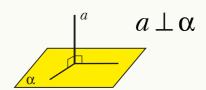
ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПЛОСКОСТЕЙ



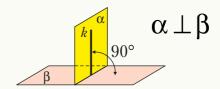
СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПЛОСКОСТЕЙ



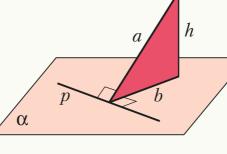
ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ



ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПЛОСКОСТЕЙ

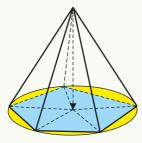


ТЕОРЕМА О ТРЕХ ПЕРПЕНДИКУЛЯРАХ



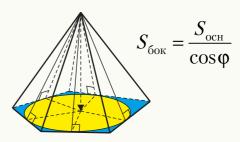
Угол между плоскостями

Если боковые ребра пирамиды равны или равно наклонены



вершина в центр описанной окружности

Если высоты боковых граней равны или грани равно наклонены



вершина в центр вписанной окружности